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Two-loop critical fluctuation-dissipation ratio for the relaxational dynamics
of the O„N… Landau-Ginzburg Hamiltonian
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The off-equilibrium purely dissipative dynamics~model A) of the O(N) vector model is considered at
criticality in ane542d.0 expansion up toO(e2). The scaling behavior of two-time response and correlation
functions at zero momentum, the associated universal scaling functions and the nontrivial limit of the
fluctuation-dissipation ratio are determined in the aging regime.
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I. INTRODUCTION

In recent years many efforts have been made in orde
understand the off-equilibrium aspects of the dynamics
statistical systems. A variety of novel dynamical behavi
emerge when some kind of randomness is present in
system. Among them, one of the most striking is that
aging ~see Ref.@1#, and references therein!. It has been
pointed out@2# that they could also emerge in nondisorder
systems if slow-relaxing modes are present. This natur
happens when the system undergoes a second-order p
transition at some critical temperatureTc . Indeed, consider a
ferromagnetic model in a disordered state and quench it
given temperatureT>Tc @3# at time t50. During the relax-
ation a small external fieldh is applied atx50 after a wait-
ing time s. At time t, the order parameter response toh is
given by the response functionRx(t,s)5d^fx(t)&/dh(s),
wheref is the order parameter and^•& stands for the mean
over the stochastic dynamics. Correlations of order par
eter fluctuations are interesting dynamical quantities as w
In the following we will focus on the two-time one, given b
Cx(t,s)5^fx(t)f0(s)&. The time evolution of the model we
are considering is characterized by two different regimes
transient one with off-equilibrium evolution, fort,tR , and a
stationary equilibrium evolution fort.tR , where tR is the
relaxation time. In the former a dependence of the sys
behavior on initial condition is expected, while in the latt
time homogeneity and time reversal symmetry~at least in the
absence of external fields! are recovered; as a consequen
we expect that fortR!s,t, Rx(t,s)5Rx

eq(t2s), Cx(t,s)
5Cx

eq(t2s) whereRx
eq andCx

eq are determined by the ‘‘equi
librium’’ dynamics of the system, with a characteristic tim
scale diverging at criticality~critical slowing down!. More-
over, the fluctuation-dissipation theorem states that

Rx
eq~t!52

1

T

dCx
eq~t!

dt
. ~1.1!

If the system does not reach the equilibrium, all the p
vious functions will depend both ons ~the ‘‘age’’ of the
system! and t. This behavior is usually referred to as agin
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and was first predicted for spin glass systems@1,4#. The
fluctuation-dissipation ratio~FDR! @2,4#,

Xx~ t,s!5
TRx~ t,s!

]sCx~ t,s!
, ~1.2!

is usually introduced to measure the distance from the e
librium of an aging system evolving at a fixed temperatureT.
A nontrivial value for this ratio is also experimentally ob
served in some glassy systems@5#.

In recent years several works@1,2,4,6–14# have been de-
voted to the study of the FDR for systems exhibiting dom
growth @15#, and for aging systems such as glasses and
glasses.Xx(t,s) turns out to be a nontrivial function oft and
s, in the low-temperature phase of all these systems. In
ticular, analytical and numerical studies indicate that
limit

X`5 lim
s→`

lim
t→`

Xx50~ t,s! ~1.3!

vanishes throughout the low-temperature phase both for
glasses and simple ferromagnetic systems@8–10,12,13#.

Only recently @2,16–21# attention has been paid to th
FDR, for nonequilibrium, nondisordered, and unfrustrat
systems at criticality. From general scaling arguments
would expect that the critical response function scales
@19–23#

Rx50~ t,s!5AR~ t2s!a2d/z~ t/s!uFR~s/t !, ~1.4!

wherea5(22h2z)/z and u is the initial-slip exponent of
the response function, related to the initial-slip exponent
the magnetizationu8 and to the autocorrelation exponentlc
@24# by the relation@22#

u85u1z21~22z2h!5z21~d2lc!. ~1.5!

In recent works the notion of local scale invariance has b
introduced as an extension of anisotropic or dynamical s
ing ~see Ref.@25#, and references therein!. Assuming that the
response function transforms covariantly under the c
structed group of local transformations, it has been arg
@26# that FR(s/t)51. Under the same assumption, the fu
spatial dependence has been also predicted@25#,

Rx~ t,s!5Rx50~ t,s!F„uxu/~ t2s!1/z
…, ~1.6!
©2002 The American Physical Society01-1
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whereF(u) is a function whose convergent series expans
is explicitly known@25#. For the correlation function and it
derivative no analogous prediction exists. One can only
pect from general renormalization group~RG! arguments
that @19–23#

Cx50~ t,s!5AC~ t2s!a112d/z~ t/s!u21FC~s/t !, ~1.7!

]sCx50~ t,s!5A]C~ t2s!a2d/z~ t/s!uF]C~s/t !, ~1.8!

with the sameu anda as in Eq.~1.4!. The functionsFC(v),
F]C(v), andFR(v) are universal and defined in such a w
that FC(0)5F]C(0)5FR(0)51, while the constantsAC ,
A]C , andAR are nonuniversal amplitudes.

From the scaling laws of above, it has been argued
X` is a new universalquantity associated with the give
nonequilibrium dynamics@19,17,20#, and, as such, it should
attract the same interest as critical exponents. Given this
versality, it is worthwhile to computeX` for those mesos-
copic models of dynamics which have the same critical
havior of some lattice models considered so far in
literature.

Correlation and response functions were exactly co
puted in the simple cases of a random walk, a free Gaus
field, and a two-dimensionalXY model at zero temperatur
and the valueX`51/2 was found@2#. The analysis of the
d-dimensional spherical model gaveX`5122/d @17#, while
X`51/2 for the one-dimensional Ising-Glauber cha
@16,19#. Monte Carlo simulations have been done for t
two- and three-dimensional Ising model@17#, finding X`

50.26(1) andX`.0.40, respectively. The effect of long
range correlations in the initial configuration has been a
analyzed for thed-dimensional spherical model@27#.

Only in a recent work@21# field-theoretical methods hav
been applied to determine the FDR and the scaling form
the response and correlation functions up to the first orde
an e expansion, for the purely relaxational dynamics of t
O(N) Ginzburg-Landau model. This field-theoretical mod
has the same symmetries~and thus the same universal pro
erties! as a wide class of spin systems on the lattice w
short-range interactions~see Ref.@30#, or Ref. @31# for a
recent review!.

In Ref. @21# the following quantity, related to the FDR
was introduced in momentum space

Xq~ t,s!5
VRq~ t,s!

]sCq~ t,s!
, ~1.9!

whereRq(t,s) andCq(t,s) are the Fourier transforms~with
respect tox) of Rx(t,s) and Cx(t,s), respectively. It was
argued that the zero-momentum limit

Xq50
` 5 lim

s→`

lim
t→`

Xq50~ t,s! ~1.10!

is equal to the same limit of the FDR~1.3! for x50, i.e.,
Xq50

` 5X` to all orders@21#. This fact allows an easier pe
turbative computation in momentum space of the new u
versal quantityX`.
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The extension of these results to two-loop order is v
important not only from a quantitative point of view. In fac
in the past, when new scaling relations have been propo
several times they resisted to the test of the first order in
e expansion, but not to higher-order calculations. Class
examples may be found in the context of surface critica
~see, e.g., Ref.@28#, p. 116, and references therein! and in the
case of anisotropic scaling at Lifshitz points@29#. This is a
further reason to present here the second-order computa
of the scaling form for the zero-momentum response fu
tion and the FDR for the purely dissipative relaxation of t
O(N) model.

The paper is organized as follows. In Sec. II we brie
introduce the model. In Sec. III we evaluate the ze
momentum response functionRq50(t,s) and in particular we
derive its scaling form. In Sec. IV we compute the FDR up
the second order ine and we derive a scaling form fo
]sCq50(t,s). In Sec. V we summarize and comment our r
sults and discuss some points that need further investiga
In the Appendices A and B we give all the details to comp
the zero-momentum Feynman integrals.

II. THE MODEL

The time evolution of anN-component fieldw(x,t) under
a purely dissipative dynamics~modelA of Ref. @32#! is de-
scribed by the stochastic Langevin equation

] tw~x,t !52V
dH@w#

dw~x,t !
1j~x,t !, ~2.1!

where V is the kinetic coefficient,j(x,t) is a zero-mean
stochastic Gaussian noise with

^j i~x,t !j j~x8,t8!&52Vd~x2x8!d~ t2t8!d i j , ~2.2!

andH@w# is the static Hamiltonian. It may be assumed, ne
the critical point, of the Landau-Ginzburg form

H@w#5E ddxF1

2
~¹w!21

1

2
r 0w21

1

4!
g0w4G . ~2.3!

Instead of solving the Langevin equation forw(j) and
then averaging over the noise distribution, the equilibriu
correlation and response functions can be directly obtai
by means of the field-theoretical action@30,33#

S@w,w̃#5E dtE ddxF w̃]w

]t
1Vw̃

dH@w#

dw
2w̃Vw̃ G .

~2.4!

Here w̃(x,t) is an auxiliary field, conjugated to the extern
field h in such a way thatH@w,h#5H@w#2*ddxh w. As a
consequence, the linear response to the fieldh of a generic
observableO is given by

d^O&
dh~x,s!

5V^w̃~x,s!O&; ~2.5!

for this reasonw̃(x,t) is termed response field.
1-2
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FIG. 1. Two-loop Feynman diagrams contrib
uting to the response function. Response pro
gators are drawn as wavy-normal lines, where
correlators are normal lines. A wavy line is a
tached to the response field and a normal one
the order parameter.
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The effect of a macroscopic initial conditionw0(x)
5w(x,t50) may be taken into account by averaging ov
the initial configuration with a weighte2H0[w0] where, for
example,

H0@w0#5E ddx
t0

2
@w0~x!2a~x!#2, ~2.6!

that specifies an initial statea(x) with gaussian short-rang
correlations proportional tot0

21. Any addition of anharmonic
terms inH0@w0# is not expected to be relevant as long as
harmonic term is there~as in the case when the initial state
in the high-temperature phase!. Instead, an initial condition
with long-range correlations may lead to a different univ
sality class, as, e.g., shown for thed-dimensional spherica
model with nonconservative dynamics@27#.

Following standard methods@30,33#, the response and
correlation functions may be obtained by a perturbative
pansion of the functional weighte2(S[w,w̃] 1H0[w0]) in terms
of the coupling constantg0 ~appearing in the vertex
g0w3w̃/3!). The propagators~Gaussian two-point function
of the fieldsw and w̃) of the resulting theory are@22#

^w̃ i~q,s!w j~2q,t !&05d i j Rq
0~ t,s!5d i j u~ t2s!G~ t2s!,

~2.7!

^w i~q,s!w j~2q,t !&05d i j Cq
0~ t,s!

5
d i j

q21r 0
FG~ ut2su!1S r 01q2

t0
21D

3G~ t1s!G , ~2.8!

where

G~ t !5e2V(q21r 0)t. ~2.9!

The response function Eq.~2.7! is the same as in equilib
rium. Equation ~2.8!, instead, reduces to the equilibriu
form when both timest and s go to infinity andt5t2s is
06610
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kept fixed. In the following we will assume the Iˆto prescrip-
tion ~see Refs.@23,34,30#, and references therein! to deal
with the ambiguities that arise in formal manipulations
stochastic equations. Consequently, all the diagrams w
self-loops of response propagator have to be omitted in
computation. This ensures that causality holds in the per
bative expansion@22,23,33#. From the technical point of
view, the breaking of time homogeneity makes the renorm
ization procedure in terms of one-particle irreducible cor
lation functions less straightforward than in standard ca
~see Refs.@28,22,23#!. Thus the computations will be done i
terms of connected functions.

From the expressions above, we can compute the FDR
the Gaussian model@2,21#,

Xq
0~ t,s!5S ]sCq

0

VRq
0D 21

5~11e22V(q21r 0)s1Vq2t0
21e22V(q21r 0)s!21.

~2.10!

When the model is not at its critical point, i.e.,r 0}T2Tc
Þ0, the limit of this ratio fors→` is 1 for all values ofq,
according to the idea that in the high-temperature phase
modes have a finite equilibration time. In this case, the eq
librium is approached exponentially fast in time and as
consequence the fluctuation-dissipation theorem applies.
the critical model, i.e.,r 050, if qÞ0 then the limit ratio is
again equal to 1, whereas forq50 we haveXq50

0 (t,s)
51/2. We can argue that, in the Gaussian model, the o
mode characterized by aging, i.e., that ‘‘does not relax’’
the equilibrium, is the zero mode in the critical limit.

III. TWO-LOOP RESPONSE FUNCTION

In this section we compute, up to the second order i
loop expansion, the critical nonequilibrium response funct
at zero external momentum for the model described in
preceding section. We use here the method of renormal
field theory in dimensional regularization with minimal su
traction of dimensional poles. Up to the second order in p
1-3
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turbation theory there are four connected Feynman diagr
~without self-loops of response propagator! that contribute to
the response function. They are depicted in Fig. 1. In te
of these diagrams and as a function of the bare couplings
fields ~denoted in the following withwB , w̃B), the zero-
momentum bare response functionRB(t,s) is given by

RB~ t,s!5Rq50
0 ~ t,s!2

N12

6
g0R1,11g0

2F S N12

6 D 2

R2,1

1
~N12!2

18
R2,21

N12

6
R2,3G1O~g0

3!. ~3.1!

In the following we assumet.s for simplicity. We also
fix t0

2150, sincet0
21 is an irrelevant variable~in the RG

sense! and thus it affects only the corrections to the lead
scaling behavior@22,23#. Using the results reported in Ap
pendix A, we get

RB~ t,s!511g̃0

N12

24 H ln
t

s
1

e

2 F ~gE1 ln 21 ln t !ln
t

s

2
1

2
ln2

t

sG J 1
g̃0

2

144H ~N12!2

8
ln2

t

s
1~N12!2

3F2S 1

e
1 ln 21gE1 ln t D ln

t

s
1

1

2
ln2

t

sG J
2g̃0

2 N12

24 F1

e S ln
4

3
1 ln

t

sD1 ln
t

s S 1

2
1 ln t1gED

2
1

2
ln2

t

s
1@ ln~ t2s!1gE# ln

4

3
2

f ~s/t !

4 G
1O~g0

3 ,g0
2e,g0e2!, ~3.2!

where g̃05Ndg0 , Nd52/@(4p)d/2G(d/2)#, and f (v) is a
regular function defined in Eq.~A28!. To lighten the nota-
tions we setV51 in the previous equations. The depe
dence onV of final formulas may be simply obtained b
t°Vt, wheret is the generic time variable.

In order to cancel out the dimensional poles appearing
this function, we have to renormalize the coupling const
according to@30#

g̃05S 11
N18

6

g̃

e
D g̃1O~ g̃2!, ~3.3!

and the fieldsw and w̃ via the relations@33# wB5Zw
1/2w,

w̃B5Zw̃
1/2

w̃, so that

R~ t,s!5~ZwZw̃!21/2RB~ t,s!

5F11
N12

24
ln

4

3

g̃2

e
1O~ g̃3!GRB~ t,s!. ~3.4!

After this renormalization,R(t,s) is a regular function of
dimensionality also fore→0. The critical response functio
is now obtained by fixingg̃ at its fixed point value@30#,
06610
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N18 F11
3~3N114!

~N18!2
eG1O~e3!, ~3.5!

leading to

R~ t,s!511e
N12

4~N18!
ln

t

s
1

e2

4 F6~N12!

~N18!2 S N13

N18
1 ln 2D

3 ln
t

s
1

~N12!2

8~N18!2
ln2

t

s
2

6~N12!

~N18!2
ln

4

3
ln~ t2s!

1
3~N12!

2~N18!2 S f ~s/t !24gEln
4

3D G1O~e3!. ~3.6!

Note that the nonscaling terms, like lnt ln t/s @appearing, for
example, inR2,3, see Eq.~A27!#, cancel each other out whe
the coupling constant is set equal to its fixed point val
Equation~3.6! agrees with the expected scaling form in m
mentum space@analogous to that in real space, Eq.~1.4!#,

R~ t,s!5AR~ t2s!a~ t/s!uFR~s/t !, ~3.7!

with the well-known exponents@22,23,30#

u5
N12

N18

e

4 F11
6e

N18 S N13

N18
1 ln 2D G1O~e3!, ~3.8!

a5
22h2z

z
52

3~N12!

2~N18!2
ln

4

3
e2 1O~e3!, ~3.9!

and the nonuniversal amplitude

AR511e2
3~N12!

8~N18!2 S f ~0!24gEln
4

3D1O~e3!.

~3.10!

For thenew universal function FR(v) we find

FR~v !511e2
3~N12!

8~N18!2
@ f ~v !2 f ~0!#1O~e3!.

~3.11!

A plot of the quantity f (v)2 f (0) @defined in Appendix A
Eq. ~A28!#, that completely characterizes the out-o
equilibrium corrections to the mean-field behavior up to t
second order in thee expansion, is reported in Fig. 2.

Due to the small prefactor (e2/72 for the Ising model,N
51), it might be very hard to detect these corrections
numerical and experimental works, as it happens for the
rections to the mean-field behavior of the static@31# and
equilibrium dynamics@35# two-point functions.

IV. TWO-LOOP FLUCTUATION-DISSIPATION RATIO

In this section, we evaluate the FDR up to the ordere2.
We do not compute the full two-point correlation functio
C(t,s), since only ]sC(t,s) is required to determine the
1-4
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FDR. This derivative may be computed by using the follo
ing diagrammatic identity.

Each amputated diagramDi(t,s) ~with label i ) contribut-
ing to the response function, also contributes to the corr
tion one in the two diagrams, as graphically illustrated
Fig. 3. Taking into account the explicit form of the propag
tors @see Eqs.~2.7! and~2.8!# for q250 and causality@which
also implies thatDi(t,s)}u(t2s) apart from contact terms#
it is easy to find that

]sCi~ t,s!52Ri~ t,s!12E
0

`

dt8 t8Di~ t8,s!, ~4.1!

whereCi(t,s) is the contribution of this diagram to the co
relation function,Ri(t,s) is the contribution to the respons
function, andDi(t8,s) is the common amputated part.

Relation~4.1! is nothing but a particular case of a relatio
following an algebraic identity for the functional integra
i.e.,

05E @dwdw̃dw0#
d

dw̃~x,s!
$w~x8,t !e2S[w,w̃] 2H0[w0]%,

~4.2!

with t.s.0. At criticality ~i.e., r 050, using dimensiona
regularization! we get in momentum space,

FIG. 2. Plot of the two-loop contribution to the universal fun
tions FR(v) @see Eq.~3.11!# andF]C(v) @see Eq.~4.9!#.
06610
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~]s2q2!^w~2q,t !w~q,s!&

52^w~2q,t !w̃~q,s!&2
g0

3!
^w~2q,t !w3~q,s!&,

~4.3!

which, in the limitq2→0, is diagrammatically expressed b
Eq. ~4.1! as far as common amputated contributions to
sponse and correlation functions are concerned.

Diagrams contributing to the correlation function, but n
to the response one do exist. They have to be compu
without taking advantage of this identity. At two-loop ord
there are two of them, as in Fig. 4.

Summing the six contributions to the correlation functi
we finally arrive at the expression

]sCB~ t,s!

2
5R~ t,s!2g0

N12

6
~]C!e

1,11g0
2H S N12

6 D 2

~]C!e
2,1

1
~N12!2

18
~]C!e

2,21
N12

6
~]C!e

2,3

1
1

2 FN12

18
~]C!2,41S N12

6 D 2

~]C!2,5G J
1O~g0

3!. ~4.4!

Considering the explicit expression for the diagram
given in Appendix B one obtains the derivative of the ba
correlation function. This bare quantity is renormalized us
Eqs.~3.3! and ~3.4!, and

FIG. 4. Diagrams contributing only to the correlation function
FIG. 3. Diagrammatic trick.
1-5
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VB5ZVV with ZV5S Zw

Zw̃
D 1/2

, ~4.5!

so that, taking into account theV we set equal to 1 in the
previous relations,

]sC~ t,s!5ZVZw
21]sCB~ t,s!5~ZwZw̃!21/2 ]sCB~ t,s!.

~4.6!

The expression of]sC(t,s) in terms of the renormalized
coupling has a multiplicative redefinition of its amplitude
the first order ing̃. Considering the fixed point value forg̃
@cf. Eq. ~3.5!# one finally obtains

]sC~ t,s!

2
5F11e

N12

4~N18!
1e2

3~N12!~3N114!

4~N18!3 G
3H 11e

N12

4~N18!
ln

t

s
1

e2

4 F6~N12!

~N18!2

3S N13

N18
1 ln 2D ln

t

s
1

~N12!2

8~N18!2
ln2

t

s

2
6~N12!

~N18!2
ln

4

3
ln~ t2s!G J H 11e2

N12

~N18!2

3F3

4
ln

4

3
ln

t2s

t1s
2gE

3

2
ln

4

3
1F~s/t !1

3

8
f ~s/t !

1
N12

8
1

3

2 S 12 ln
4

3D ln 22
3

4 S 11 ln
4

3D
1

3

8
ln2

4

3
1

3

4
Li2~1/4!G J 1O~e3!, ~4.7!

where the functionsf (v) andF(v) are defined in Eqs.~A28!
and~B12!, respectively, and Li2 is the dilogarithmic function
whose standard definition is recalled in Eq.~A15!. Note that
also for ]sC(t,s) all the nonscaling terms cancel out whe
the coupling constant is set equal to its fixed point val
This result agrees with the scaling form in momentum sp
@analogous to Eq.~1.8!#,

]sC~ t,s!5A]C~ t2s!a~ t/s!uF]C~s/t !, ~4.8!

with the samea andu as given in the preceding section an
a new universal scaling functionF]C(v) given by

F]C~v !511e2
3~N12!

8~N18!2 F2 ln
4

3
ln

12v
11v

1
8

3
@F~v !2F~0!#1 f ~v !2 f ~0!G1O~e3!.

~4.9!
06610
.
e

A plot of the loop corrections in the above expression@apart
from the factor 3(N12)/8(N18)2 appearing also inFR(v)]
is shown in Fig. 2. As already noticed forFR(v), effective
corrections to mean-field behavior are quantitatively ve
small for F]C(v).

Taking the long-time limit@according to Eq.~1.10!# of
both the correlation and response functions one obtains
limit of the critical fluctuation-dissipation ratio we are inte
ested in,

~Xq50
` !21

2
511

N12

4~N18!
e1e2

N12

~N18!2

3FN12

8
1

3~3N114!

4~N18!
1cG1O~e3!,

~4.10!

with

c52
3

4
1

3

4
ln 2~2111 ln 223 ln 3!2

23

8
ln231

3

2
Li2~1/4!

2
21

4
Li2~1/3!1

21

8
Li2~3/4!2

1

8
Li2~8/9!520.0415 . . . .

~4.11!

We note that the contribution ofc to the FDR is quite small.
For example, withN51 the sum of the first two terms in
brackets is;1.8, which is about 45 times larger thanc.

V. CONCLUSIONS AND DISCUSSIONS

In this work we studied the off-equilibrium properties o
the purely dissipative relaxational dynamics of anN-vector
model in the framework of field-theoreticale expansion. The
results presented here extend those of Ref.@21#. The scaling
forms for the zero-momentum response function and for
derivative with respect to the waiting time of the two-tim
correlation function read

R~ t,s!5AR~ t2s!a~ t/s!uFR~s/t !, ~5.1!

]sC~ t,s!5A]C~ t2s!a~ t/s!uF]C~s/t !. ~5.2!

The universal functionsFR(s/t) and F]C(s/t) are given in
Eqs.~3.11! and ~4.9!, respectively. In both cases the corre
tions to the Gaussian value 1 is of ordere2. In principle these
corrections should be detectable in computer and experim
tal works, but being quantitatively very small, they are ha
to observe. We would remark that this fact does not me
that aging effects in these models are weak compared
the analogous phenomena in glassy systems. In fact a
manifests itself in the full scaling forms~e.g.,uÞ0) and in
the violation of fluctuation-dissipation theorem, i.e., inX`

Þ1 in a quantitative way.
We note that theR(t,s) we found agrees with the gener

RG form, but at first sight it is not compatible with the Fo
1-6
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rier transform of Eq.~1.6!. This naive comparison should b
done very carefully because it involves a Fourier integ
which could be divergent. The analysis of the fullq depen-
dence ofRq(t,s) may give some insight into this problem
This dependence has been already carried out up toO(e)
@21#, but it is very hard to determine it up to two loops.
other dynamical universality classes this discrepancy alre
arises atO(e). The computation of the fullq dependence in
these cases seems to be simpler and may provide some u
hints @36#.

We computed the FDRXq50 for generalN, cf. Eq.~4.10!.
As shown in Ref.@21# this quantity for zero momentum ha
the same long-time limit as the standard FDRX`. Using this
equality we may compare our result with those presente
the literature.

In the limit N→`, Eq. ~4.10! reduces toX`51/22e/8
2e2/321O(e3), in agreement with the exact result for th
spherical modelX`5122/d @17#.

The formula for generalN @cf. Eq. ~4.10!# allows us to
make quantitative prediction for a large class of systems
Fig. 5 we report the dependence ofX` on the dimensionality
at fixedN, while in Fig. 6 we show the dependence onN at
fixed d542e. For each model we report two values: one
obtained by direct summation~Padéapproximant@2,0#) and
the other by ‘‘inverse’’ summation~Padé approximant
@0,2#). We do not show the@1,1# approximant, since it has
pole in the range ofe we are interested in. From these figur
some general trends may be understood.

~1! Decreasing the dimensionality,X` always decreases
at least up toe52 ~for the one-dimensional Ising model th
valueX`51/2 is expected@17#!.

~2! IncreasingN, X` decreases, approaching in a quite fa
way the exact result for the spherical model.

~3! For N5` the curve of the@0,2# approximant repro-
duces better the exact result in any dimension with respe
the @2,0# approximant.

The last point suggests the use of the@0,2# value as an
estimate ofX`, also for physicalN. We quote asindicative

FIG. 5. X` as a function of the dimensionalityd542e for
severalN. For eachN the upper curve is the@2,0# Padéapproximant
and the lower one the@0,2#. The exact result forN5` is reported
as a solid line. The numerical Monte Carlo values for the Is
model in two and three dimensions are also indicated~for the latter,
there is no indication about the error!.
06610
l

dy

eful

in

In

t

to

error the difference between the two approximants. Us
this procedure, we obtainX`50.429(6) for the three-
dimensionalN51 model, compared to.0.46 found at one-
loop @21#, in very good agreement with the Monte Car
simulation valueX`.0.40 for the three-dimensional Isin
Model @17# with nonconservative~heat-bath Glauber! dy-
namics. Consideringe52 one obtainsX`50.30(5) for N
51, improving the one-loop estimate.0.42 in the right
direction towards the Monte Carlo resultX`50.26(1) for
the two-dimensional Ising Model with Glauber dynami
@17#.

Using our results we can give predictions ofX` for sys-
tems that have not yet been analyzed by numerical sim
tions. We estimateX`50.416(8) for the three-dimensiona
XY model andX`50.405(10) for the three-dimensiona
Heisenberg model. These predictions may be tested by
merical simulations extending the results quoted in Ref.@17#.

There are also several open questions that need fur
investigations. For example, a ‘‘rigorous’’ proof of the fa
that the FDR is exactly 1 for all modes withq2Þ0 ~some-
how related to the presence of a mass gap! has not yet been
given. Then one might ask how these theoretical res
~scaling forms, relaxing modes, etc.! change if one change
mesoscopic dynamics~e.g., with conserved quantities!, or
when more complex static Hamiltonians are considered, e
those with disorder or frustration, or when different initi
conditions ~e.g., with long-range correlations! are consid-
ered. We will consider in forthcoming works theO(N)
model with modelB and C dynamics@36# and the purely
dissipative relaxation of the Ising model with quenched ra
dom impurities@37#.
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APPENDIX A: CONNECTED DIAGRAMS FOR THE
RESPONSE FUNCTION

The four diagrams contributing to the response funct
up to the two-loop order are reported in Fig. 1. The one-lo

FIG. 6. N dependence ofX` for d52, 3. The upper curve is the
@2,0# Padéapproximant and the lower one the@0,2#. The dotted
line is the exact result forN5` in d53 (X`51/3).
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diagram was already discussed in Ref.@21#. The expression
obtained there for the critical bubble~i.e., for the 1PI part of
the diagram! is

Bc~ t !5E ddq

~2p!d
Cq

0~ t,t !52
1

d/221

~2t !12d/2

~4p!d/2

52Nd

G~d/221!

2d/2
t12d/2. ~A1!

Thus the full connected one-loop diagram for the respo
function is given by

R1,1~ t,s!5E
s

t

dt8Bc~ t8!

52Nd

G~d/221!

2d/2~22d/2!
~ t22d/22s22d/2!

52Nd

1

4 F ln
t

s
1

e

2 S ~gE1 ln 21 ln t !ln
t

s
2

1

2
ln2

t

sD G
1O~e2!. ~A2!

From these one-loop expressions, it is quite simple
compute the two-loop integralsR2,1 and R2,2 of Fig. 1. In-
deed the two-loop critical bubble~the 1PI part ofR2,1) can
be computed in terms ofBc(t) as

Bc2~ t !5E ddq1

~2p!dE0

`

dt8Bc~ t8!Rq1

0 ~ t,t8!Cq1

0 ~ t,t8!

5Nd
2 b~d!

42d
t32d, ~A3!

where

b~d!5
G2~d/221!

2d21 F12
~42d!G2~22d/2!

2G~42d! G
52

1

8
@11e~ ln 21gE!1O~e2!#. ~A4!

By means of this expression, we computeR2,1 taking into
account the external legs withq50,

R2,1~s,t !5E
s

t

dt8B2c~ t8!5Nd
2b~d!

t42d2s42d

~42d!2
, ~A5!

which near four dimensions has the following series exp
sion:
06610
e

o

-

R2,1~s,t !5
Nd

2

8 F2 ln
t

s S 1

e
1 ln t1 ln 21gED1

1

2
ln2

t

sG
1O~e!. ~A6!

The computation ofR2,2 is simple once the expression
for R1,1 and Bc(t) are known. Indeed, from Eq.~A2!, one
obtains

R2,2~s,t !5E
s

t

dt8R1,1~ t,t8!Bc~ t8!

5Nd
2G2~d/221!

2d21 F t22d/22s22d/2

42d G2

, ~A7!

that is, expanding ine,

R2,2~s,t !5Nd
2 1

32
ln2

t

s
1O~e!. ~A8!

The last diagramR2,3 is more difficult to be worked out
and it requires a long calculation whose main steps are
scribed in what follows. First of all we evaluate its 1PI co
tribution calledO1(t,s),

O1~ t,s!5E ddq1

~2p!dE ddq2

~2p!d
Cq1

0 ~ t,s!Cq2

0 ~ t,s!Rq11q2

0 ~ t,s!

5u~ t2s!E ddq1

~2p!d

ddq2

~2p!d

1

q1
2q2

2 ~e2q1
2(t2s)

2e2q1
2(t1s)!~e2q2

2(t2s)2e2q2
2(t1s)!e2(q11q2)2(t2s)

5u~ t2s!F ~ t2s!22dJd~1,1!1~ t1s!22dJdS 1,
t2s

t1sD
22~ t2s!22dJdS t1s

t2s
,1D G , ~A9!

with

Jd~a,b!5E ddq1

~2p!dE ddq2

~2p!d
e2q1

2
2aq2

2
2b(q11q2)2

5Nd
2@~11b!~a1b!#12(d/2)FdS 4b2

~b11!~a1b! D ,

~A10!

and

Fd~x!5
G~d/2!

4 E
0

`

dssd/222esx/4G~0,s!

5
G~d/2!G~d/221!

2~d22! 2 F1S d

2
21,

d

2
21,

d

2
,
x

4D .

~A11!
1-8
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In particular, for our calculations, we are interested in
limits

F4~x!52
ln~12x/4!

x
, ~A12!

F42e~1!5 ln
4

3
1eF S gE2

1

2D ln
4

3
2

1

4
ln2

4

3
1

1

2
Li2S 1

4D G
1O~e2!, ~A13!

Fd~0!5
G2~d/221!

4
. ~A14!

Here Li2(z) is the standard dilogarithm, defined as

Li2~z!5 (
k51

`
zk

k2
. ~A15!

The final expression forO1(t,s), in generic dimension, is

O1~ t,s!5
Nd

2 u~ t2s!

2d22 FFd~1!~ t2s!22d1t22dFdS S t2s

t D 2D
22@ t~ t2s!#12d/2FdS t2s

t D G . ~A16!

The full connected diagramR2,3(s,t) is thus given by the
following expression:

R2,3~s,t !5E
s

t

dt9E
t9

t

dt8O1~ t8,t9!

5Nd
2@A1~s,t !1A2~s,t !22A3~s,t !#, ~A17!

where

A1~s,t !5222dFd~1!
~ t2s!42d

~42d!~32d!
, ~A18!

A2~s,t !5222dt42dE
s/t

1

dyy32dE
y

1

dzzd24Fd„~12z!2
…

5222dt42dI 1~s/t !, ~A19!

A3~s,t !5222dt42dE
s/t

1

dyy32dE
y

1

dzzd24

3~12z!12d/2Fd~12z!

5222dt42dI 2~s/t !. ~A20!

The evaluation of the two functionsI 1(v) andI 2(v) is rather
cumbersome but algebraically trivial. After some calcu
tions one gets
06610
e

-

I 1~v !5
G2~d/221!

4
@ ln v~8 ln 226 ln 3!1 f 1~v !1O~e!#,

~A21!

I 2~v !5
G2~d/221!

4 F2
2

e
ln v2 ln2v2~126 ln 2

13 ln 3!ln v1 f 2~v !1O~e!G , ~A22!

where f i(v) are given by

f 1~v !/45 ln vE
0

v
dzF4„~12z!2

…1E
v

1

dz ln zF4„~12z!2
…,

~A23!

f 2~v !/45 ln vE
0

v
dz

F4~12z!21

12z
1E

v

1

dz
ln z

12z

3@F4~12z!21#1E
v

1

dz
ln~12z!

z
, ~A24!

and in particular these are regular functions in the limitv
→0,

f 1~0!5 ln221 ln2 8
3 13 Li2~1/4!24 Li2~2/3!, ~A25!

f 2~0!52
p2

6
1

3

2
ln2

4

3
2Li2~1/4!. ~A26!

Inserting all these contributions in Eq.~A17!, we get

4R2,3~s,t !

Nd
2

52
1

e S ln
4

3
1 ln

t

sD2 ln
4

3
@ ln~ t2s!1gE#

2S 1

2
1gE1 ln t D ln

t

s
1

1

2
ln2

t

s
1

f ~s/t !

4

1O~e!, ~A27!

with

f ~v !5 f 1~v !22 f 2~v !2 ln
4

3
~21 ln 12!22 Li2~1/4!,

~A28!

f ~0!5
p2

3
22 ln

4

3
13 ln222 ln2

8

3
13 Li2~1/4!24 Li2~2/3!

50.663 707 . . . . ~A29!

APPENDIX B: CONNECTED DIAGRAMS FOR THE FDR

In this appendix we evaluate the rest of the diagrams
quired for the computation of the FDR. We do not evalua
the full integral for the correlation function, since we ma
1-9
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use of the trick explained in details in Sec. IV. For this reas
we consider first those diagrams contributing also to the
sponse function and we evaluate only their extra contri
tions @given by *0

`dt9t9Di(t9,s) in Eq. ~4.1! and denoted
with the subscript ‘‘e’’ in what follows# to the derivative of
the correlation function. For the first three diagrams th
contributions are very simple,

~]C!e
1,15sBc~s!5NdF2

1

4
2

e

8
~ ln s1gE1 ln 2!G1O~e2!,

~B1!

~]C!e
2,15E

0

s

dt9t9Bc~ t9!Bc~s!5Nd
2 G2~d/221!

2d~32d/2!
s42d

5
Nd

2

16
1O~e!, ~B2!

~]C!e
2,25sBc2~s!52Nd

2 1

8 S 1

e
1gE1 ln 21 ln sD1O~e!.

~B3!

The fourth contribution is less simple,

~]C!e
2,35E

0

s

dt9t9O1~ t9,s!

5Nd
2222ds42dF Fd~1!

~42d!~32d!

1E
0

1

dzzFd„~12z!2
…22E

0

1

dzz~12z!12d/2

3Fd~12z!G . ~B4!

Using now the explicit form forF4(x) given in Eq.~A12!,
one obtains

4~]C!e
2,3

Nd
2

52S 1

e
1 ln s1gE1

1

2D S ln
4

3
11D1Li2~1/4!

1 ln
4

3 S 1

4
ln

4

3
2 ln 2D1O~e!. ~B5!

The diagrams whose amputated part does not contri
also to the response function are shown in Fig. 4. The sun
type diagram (]C)2,4 is quite difficult, thus we first compute
06610
n
-
-

e

te
et-

its 1PI partO2(t,s). Introducingq35q11q2, this contribu-
tion is given by~for t.s)

O2~ t,s!5E ddq1

~2p!dE ddq2

~2p!d
Cq1

0 ~ t,s!Cq2

0 ~ t,s!Cq3

0 ~ t,s!

5E ddq1

~2p!dE ddq2

~2p!d)i

1

qi
2 ~e2qi

2(t2s)2e2qi
2(t1s)!

5Nd
2@D32dKd~1!13s32dKd~D/s!

23D32dKd~s/D!2s32dKd~1!#, ~B6!

with D5t2s, s5t1s, and

Kd~x!5
1

Nd
2E ddq1

~2p!dE ddq2

~2p!d

1

q1
2

1

q2
2

1

~q11q2!2

3e2q1
2
2q2

2
2x(q11q2)2

5
G~d/221!G~d/2!

4 E
x

` du

~11u!d22

3E
0

1

dvvd/222F12
vu2

~11u!2G 12d/2

. ~B7!

In the following we are interested in the limits

K4~x!5
1

2
ln

2~11x!

112x
2

1

4x
ln

112x

~11x!2
, ~B8!

K42e~1!5
3

4
ln

4

3
1

e

4 F3 ln
4

3 S 1

2
1gED1

1

4
ln231

Li2~8/9!

2 G
1O~e2!. ~B9!

Introducing these results in the expression for the conne
diagram

~]C!2,45E
0

t

dt8O2~ t8,s!5E
0

s

O2~s,t8!1E
s

t

O2~ t8,s!,

~B10!

one finds
1-10
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~]C!2,4

Nd
2

5
Kd~1!

42d
@2s42d1~ t2s!42d2~ t1s!42d#13E

0

s

dt8F ~s1t8!32dKdS s2t8

s1t8
D 2~s2t8!32dKdS s1t8

s2t8
D G

13E
s

t

dt8F ~s1t8!32dKdS t82s

t81s
D 2~ t82s!32dKdS s1t8

t82s
D G

5
Kd~1!

42d
@2s42d1~ t2s!42d2~ t1s!42d#13~2s!42dF E

0

1

dy~11y!d25@Kd~y!2y32dKd~1/y!#

1E
0

(t2s)/(t1s)

dy~12y!d25@Kd~y!2y32dKd~1/y!#G
5

3

2
ln

4

3 S 1

e
1 ln s1

1

2
ln

t2s

t1s
1gED1F~s/t !1O~e!, ~B11!
where

F~v !52K48~1!2
3

2
gEln

4

3
13F E

0

1 dy

11y

3S K4~y!2
1

y
K4~1/y! D1E

0

(12v)/(11v) dy

12y

3S K4~y!2
1

y
K4~1/y! D G . ~B12!

In particular we are interested in the limitv→0, given by

F~0!52K48~1!16E
0

1 dy

12y2 FK4~y!2
1

y
K4S 1

yD G2
3

2
gEln

4

3

5
3

4
ln

4

3
1

39

4
ln222

9

4
ln 21 ln 32

13

4
ln23

2
21

4
Li2~1/3!1

21

8
Li2~3/4!2

1

8
Li2~8/9!
.F

rin

06610
520.248 89 . . . . ~B13!

Now the only diagram left isC2,5 of Fig. 4. It is given by

C2,5~ t,s!5E dt8dt9Rq50
0 ~ t,t9!Bc~ t9!Cq50

0 ~ t9,t8!Bc~ t8!

3Rq50
0 ~s,t !

5Nd
2 G2~d/221!

2d21~32d/2!~22d/2!

3F t22d/22
s22d/2

52d Gs32d/2. ~B14!

Its derivative with respect tos, near four dimension, is

~]C!2,55]sC
2,5~ t,s!5Nd

2 1

8 F ln
t

s
11G1O~e!. ~B15!
tt.
@1# E. Vincent, J. Hammann, M. Ocio, J.P. Bouchaud, and L
Cugliandolo, Lect. Notes Phys.492, 184 ~1997!; J.P.
Bouchaud, L.F. Cugliandolo, J. Kurchan, and M. Me´zard, in
Spin Glasses and Random Fields, edited by A.P. Young, Direc-
tions in Condensed Matter Physics Vol. 12~World Scientific,
Singapore, 1998!.

@2# L.F. Cugliandolo, J. Kurchan, and G. Parisi, J. Phys. I4, 1641
~1994!.

@3# We are not interested here in the problem of phase orde
dynamics~see Ref.@15# for a review!, so we will not consider
the case of a quench toT,Tc .

@4# L.F. Cugliandolo and J. Kurchan, Phys. Rev. Lett.71, 173
~1993!; J. Phys. A27, 5749~1994!.

@5# T.S. Grigera and N.E. Israeloff, Phys. Rev. Lett.83, 5038
~1999!; L. Bellon and S. Ciliberto, Physica D168-169, 325
.

g

~2002!; D. Hérisson and M. Ocio, Phys. Rev. Lett.88, 257202
~2002!.

@6# T.J. Newman and A.J. Bray, J. Phys. A23, 4491~1990!.
@7# L.F. Cugliandolo and D.S. Dean, J. Phys. A28, 4213~1995!.
@8# L.F. Cugliandolo, J. Kurchan, and L. Peliti, Phys. Rev. E55,

3898 ~1997!.
@9# A. Barrat, Phys. Rev. E57, 3629~1998!.

@10# L. Berthier, J.L. Barrat, and J. Kurchan, Eur. Phys. J. B11, 635
~1999!.

@11# S. Franz, M. Me´zard, G. Parisi, and L. Peliti, Phys. Rev. Le
81, 1758~1998!; J. Stat. Phys.97, 459 ~1999!.
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