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Two-loop critical fluctuation-dissipation ratio for the relaxational dynamics
of the O(N) Landau-Ginzburg Hamiltonian
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The off-equilibrium purely dissipative dynamigsodel A) of the O(N) vector model is considered at
criticality in ane=4—d>0 expansion up t®(e?). The scaling behavior of two-time response and correlation
functions at zero momentum, the associated universal scaling functions and the nontrivial limit of the
fluctuation-dissipation ratio are determined in the aging regime.
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I. INTRODUCTION and was first predicted for spin glass systeffigd]. The
fluctuation-dissipation ratioFDR) [2,4],
In recent years many efforts have been made in order to

understand the off-equilibrium aspects of the dynamics of X,(t,5) = TR(t,s)
statistical systems. A variety of novel dynamical behaviors an dsCy(t,S)’
emerge when some kind of randomness is present in the
system. Among them, one of the most striking is that ofis usually introduced to measure the distance from the equi-
aging (see Ref.[1], and references therginlt has been librium of an aging system evolving at a fixed temperatlire
pointed ouff 2] that they could also emerge in nondisorderedA nontrivial value for this ratio is also experimentally ob-
systems if slow-relaxing modes are present. This naturallperved in some glassy systefas.
happens when the system undergoes a second-order phasdn recent years several works,2,4,6—14 have been de-
transition at some critical temperatufe. Indeed, consider a voted to the study of the FDR for systems exhibiting domain
ferromagnetic model in a disordered state and quench it to growth[15], and for aging systems such as glasses and spin
given temperatur@ =T, [3] at timet=0. During the relax- glassesX(t,s) turns out to be a nontrivial function efand
ation a small external fieltd is applied atx=0 after a wait- S, in the low-temperature phase of all these systems. In par-
ing time s. At time t, the order parameter responsehtads ticular, analytical and numerical studies indicate that the
given by the response functioRy(t,s)= 8(p,(t))/sh(s),  limit
where ¢ is the order parameter add) stands for the mean B
over the stochastic dynamics. Correlations of order param- X==lim limXy_o(t,s) (1.3
eter fluctuations are interesting dynamical quantities as well. sor e

In the following we will focus_ on the tW(.)'time one, given by vanishes throughout the low-temperature phase both for spin
Cy(t,5) = (¢«(1) $o(s)). The time evolution of the model we - ,qse5 and simple ferromagnetic systégs10,12,13

are considering is characterized by two different regimes: z(iJ Only recently[2,16—21 attention has been paid to the
transient one with off-equilibrium evolution, fortg, and & £pR “for nonequilibrium, nondisordered, and unfrustrated
stationary equilibrium evolution for>tg, wheretg is the  gygtems at criticality. From general scaling arguments one

relaxation time. In the former a dependence of the systenyq |4 expect that the critical response function scales as
behavior on initial condition is expected, while in the Iatter[lg_za

time homogeneity and time reversal symmeti/least in the

absence of external fieldsre recovered; as a consequence R._o(t,5) = Ag(t—5)2 Y%(t/s)? Fr(slt), (1.4)

we expect that fortg<s,t, R,(t,s)=R{{(t—s), C,(t,s)

=C{t—s) whereR}andC;® are determined by the “equi- wherea=(2— »—z)/z and ¢ is the initial-slip exponent of
librium” dynamics of the system, with a characteristic time the response function, related to the initial-slip exponent of
scale diverging at criticality(critical slowing down. More-  the magnetizatio®’ and to the autocorrelation exponext

1.2

over, the fluctuation-dissipation theorem states that [24] by the relation22]
1dC7) 0'=60+z"Y2—z—n)=z"Hd—\,). (1.5
REG(T)Z—T g (1.1

In recent works the notion of local scale invariance has been
introduced as an extension of anisotropic or dynamical scal-
If the system does not reach the equilibrium, all the preing (see Ref[25], and references thergimssuming that the
vious functions will depend both os (the “age” of the  response function transforms covariantly under the con-
system andt. This behavior is usually referred to as aging structed group of local transformations, it has been argued

[26] that Fg(s/t)=1. Under the same assumption, the full
spatial dependence has been also predi@&f]
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where®(u) is a function whose convergent series expansion The extension of these results to two-loop order is very
is explicitly known[25]. For the correlation function and its important not only from a quantitative point of view. In fact,
derivative no analogous prediction exists. One can only exin the past, when new scaling relations have been proposed,
pect from general renormalization groyRG) arguments several times they resisted to the test of the first order in the
that[19-23 € expansion, but not to higher-order calculations. Classical
examples may be found in the context of surface criticality
Cyooft,8) = Ac(t—9)2 "1 9Z(t/5) "1 F (slt), (1.7)  (see, e.g., Ref28], p. 116, and references therpand in the
case of anisotropic scaling at Lifshitz poirf@9]. This is a
3sCyo(t,S)=A,c(t—s)2 Y4(t/s)’ F,c(slt), (1.8)  further reason to present here the second-order computation
of the scaling form for the zero-momentum response func-
with the samed anda as in Eq.(1.4). The functionsF:(v), tion and the FDR for the purely dissipative relaxation of the
Fic(v), andFg(v) are universal and defined in such a way O(N) model.
that F¢(0)=F,c(0)=Fr(0)=1, while the constantsi., The paper is organized as follows. In Sec. Il we briefly
A,c, and Ag are nonuniversal amplitudes. introduce the model. In Sec. Ill we evaluate the zero-
From the scaling laws of above, it has been argued thahomentum response functiéy_o(t,s) and in particular we
X* is a new universalquantity associated with the given derive its scaling form. In Sec. IV we compute the FDR up to
nonequilibrium dynamic$19,17,2Q, and, as such, it should the second order ire and we derive a scaling form for
attract the same interest as critical exponents. Given this uni#;C,_(t,s). In Sec. V we summarize and comment our re-
versality, it is worthwhile to comput&” for those mesos- sults and discuss some points that need further investigation.
copic models of dynamics which have the same critical bein the Appendices A and B we give all the details to compute
havior of some lattice models considered so far in thethe zero-momentum Feynman integrals.
literature.
Correlation and response functions were exactly com- Il. THE MODEL
puted in the simple cases of a random walk, a free Gaussian ) ) )
field, and a two-dimensiona{Y model at zero temperature 1 he time evolution of atN-component fieldp(x,t) under
and the valuex”=1/2 was found2]. The analysis of the @ purely dissipative dynamidsnodel A of Ref.[32]) is de-
d-dimensional spherical model ga& = 1—2/d [17], while ~ Scribed by the stochastic Langevin equation
X*=1/2 for the one-dimensional Ising-Glauber chain SH[ ¢]
[16,19. Monte Carlo simulations have been done for the dp(x,t)=—Q ¢
two- and three-dimensional Ising modgl7], finding X* Se(x,t)
=0.26(1) andX”=0.40, respectively. The effect of long-
range correlations in the initial configuration has been als
analyzed for thal-dimensional spherical modg27].
Only in a recent worK21] field-theoretical methods have . ! 4V — o iy
been applied to determine the FDR and the scaling forms of (EODGOE)) =200 =X 8(t=1) 8, (2.2
the response and correlation functions up to the first order iand [ ¢] is the static Hamiltonian. It may be assumed, near

an e expansion, for the purely relaxational dynamics of thethe critical point, of the Landau-Ginzburg form
O(N) Ginzburg-Landau model. This field-theoretical model

+E&(X,t), (2.9

(yvhereﬂ is the kinetic coefficient£(x,t) is a zero-mean
stochastic Gaussian noise with

has the same symmetriéand thus the same universal prop- all , 1,1 4
ertie as a wide class of spin systems on the lattice with H[‘P]:j A% 5 (V@) + 5roe™+ 7700¢" . (2.3
short-range interactionssee Ref.[30], or Ref.[31] for a
recent review, Instead of solving the Langevin equation fe¢&) and
In Ref. [21] the following quantity, related to the FDR, then averaging over the noise distribution, the equilibrium
was introduced in momentum space correlation and response functions can be directly obtained
by means of the field-theoretical actip80,33]
X, (t,5)= ORy(L,) (1.9
q 9sCq(1,8) S[qg,?p]:f dtf ddx E(Z—T+Q¢57;ED(P]—EQ}}.
whereR(t,s) andC(t,s) are the Fourier transformsvith (2.4
respect tox) of R (t,s) and C,(t,s), respectively. It was -
argued that the zero-momentum limit Here ¢(x,t) is an auxiliary field, conjugated to the external
field h in such a way that{[ ¢,h]=H[ ¢]— fd%h ¢. As a
;(3:0: lim lim Xy_(t,s) (1.10 consequence, the linear response to the tetif a generic
50t observableD is given by
o an raovol s st o a1 o xg -0 es
4=0= . per- oh(x,s)
turbative computation in momentum space of the new uni- 5
versal quantityX™. for this reasonp(x,t) is termed response field.
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The effect of a macroscopic initial conditio@q(X)

#
)3

: FIG. 1. Two-loop Feynman diagrams contrib-
uting to the response function. Response propa-
gators are drawn as wavy-normal lines, whereas
correlators are normal lines. A wavy line is at-
tached to the response field and a normal one to
the order parameter.

t

kept fixed. In the following we will assume tﬁtnlprescrip—

= p(x,t=0) may be taken into account by averaging overtion (see Refs[23,34,3Q, and references thergiio deal

the initial configuration with a weighe ™ Hol¢dl where, for
example,

Hleol= [ d% Dleg-al, (28

that specifies an initial sta@(x) with gaussian short-range

correlations proportional tmgl. Any addition of anharmonic

with the ambiguities that arise in formal manipulations of
stochastic equations. Consequently, all the diagrams with
self-loops of response propagator have to be omitted in the
computation. This ensures that causality holds in the pertur-
bative expansiorf22,23,33. From the technical point of
view, the breaking of time homogeneity makes the renormal-
ization procedure in terms of one-particle irreducible corre-
lation functions less straightforward than in standard cases

terms inHg[ ¢o] is not expected to be relevant as long as the(see Refs[28,22,23). Thus the computations will be done in
harmonic term is therés in the case when the initial state is terms of connected functions.

in the high-temperature phasénstead, an initial condition

From the expressions above, we can compute the FDR for

with long-range correlations may lead to a different univer-the Gaussian mod¢,21],

sality class, as, e.g., shown for tldedimensional spherical

model with nonconservative dynamif7].

Following standard methodg30,33, the response and
correlation functions may be obtained by a perturbative ex-

pansion of the functional weighg™ (Sl¢:¢1*Hol¢aD in terms

of the coupling constanty, (appearing in the vertex
Joe @/3!). The propagator$Gaussian two-point functions

of the fieldse and¢) of the resulting theory arg22]

(¢i(a,5)¢j(—a,t))o= &;RY(t,5) = 5; 6(t—S)G(t—s),

2.7)
(#i(9,5)¢;(—q,1)o= 5;CY(t,S)
:qz‘:‘iro G(|t—s|)+ ro:OqZ_l)
XG(t+s)|, (2.9
where
G(t)=e 2@ +rot, (2.9

The response function E@2.7) is the same as in equilib-
rium. Equation(2.8), instead, reduces to the equilibrium

form when both timed ands go to infinity andr=t—s is

o\ -1

35C?

0
QR}

Xq(t,s)=

:(1+efzﬂ(q2+r0)s+quTalefzﬂ(qurro)S)fl_
(2.10

When the model is not at its critical point, i.eqcT—T,

#0, the limit of this ratio fors—o is 1 for all values ofg,
according to the idea that in the high-temperature phase all
modes have a finite equilibration time. In this case, the equi-
librium is approached exponentially fast in time and as a
consequence the fluctuation-dissipation theorem applies. For
the critical model, i.e.ry=0, if g#0 then the limit ratio is
again equal to 1, whereas fay=0 we have)cg=0(t,s)
=1/2. We can argue that, in the Gaussian model, the only
mode characterized by aging, i.e., that “does not relax” to
the equilibrium, is the zero mode in the critical limit.

IIl. TWO-LOOP RESPONSE FUNCTION

In this section we compute, up to the second order in a
loop expansion, the critical nonequilibrium response function
at zero external momentum for the model described in the
preceding section. We use here the method of renormalized
field theory in dimensional regularization with minimal sub-
traction of dimensional poles. Up to the second order in per-
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turbation theory there are four connected Feynman diagrams B 6 € 3(3N+14)
(without self-loops of response propagatirat contribute to g* e|+0(e), (3.5
the response function. They are depicted in Fig. 1. In terms TN+ (N+8)?
of these diagrams and as a function of the bare couplings ar]eadln o
fields (denoted in the following witheg, ¢g), the zero- g
momentum bare response functiBg(t,s) is given by 2 t 2[6(N+2) (N+3
) 5 (N2 ) 3 R(t,s) 1+64(N+8)|ns 7| (Nte2IN 8+In2)
RB(tvs):Rq:O(t!S)_ gOR ' +gO T R=
t  (N+2)% .t 6(N+ 2)
(N+2)2 2 5 Xlng+—2|n g —2 |n(t S)
4 n R22 R2,3 +O(g0) (31) 8(N+8) (N 8)
In the following we assumé>s for simplicity. We also 3(N+2) 4 3
fix 7,1=0, sincer, ! is an irrelevant variablgin the RG * 2(N+8)2 f(S/t)_47'E|n§ +0(e). 39

sensg and thus it affects only the corrections to the leading

scaling behaviof22,23. Using the results reported in Ap- Note that the nonscaling terms, liketlm t/s [appearing, for

pendix A, we get example, inR?3 see Eq(A27)], cancel each other out when
the coupling constant is set equal to its fixed point value.

N+2 Equation(3.6) agrees with the expected scaling form in mo-
Re(t:9)=1+0o ;- 24 In +3 (yE+In2+Int)Ing mentum spacganalogous to that in real space, Ef.4)],
1 .t 92 [(N+2)2 R(t,5)=Ag(t—s)3(t/s) F(slt), (3.7
- +17°4( - P —+(N+2)2 R R
with the well-known exponent22,23,3(Q
1 t 1 t
X| = ;+In2+yE+Int In§+§In2§} _N+2 € 1 Ge 3 In2 o 3.8
“N+8a| " N+8|NFs N2)| Ol B8
pN*2 1 | 4-i-l +1 ! 1+| t+
G0 5g | ¢| g ting/+ing|5+int+ye 2-p-z  3(N+2) 4 , ,
a= =— Inz € +0(€°), (3.9

4 f(slt) z 2(N+8)? 3

1|2t+| + vl
—5In%g [In(t—s) 7E]n§_

2 4 and the nonuniversal amplitude
+0(95,95€,90€), (32 3(N+2) 4
- i , AR=1+62—<f(0)—4'yE|n— +0(€%).
where go=Nygo, Ng=2[(47)¥?T'(d/2)], and f(v) is a 8(N+8)? 3

regular function defined in EqA28). To lighten the nota- (3.10
tions we set()=1 in the previous equations. The depen-

dence onQ) of final formulas may be simply obtained by For thenew universal function g{v) we find

t—Qt, wheret is the generic time variable.

In order to cancel out the dimensional poles appearing in , 3(N+2)
this function, we have to renormalize thepcouplin%pconsgnt r(v)=1+e€ 8(N 8)2[ (L)~ 1(0)]+0(e?).
according td 30] (3.12
~ N+87|~ - A plot of the quantityf(v)—f(0) [defined in Appendix A
9o=| 1+ —— ]9+ 0(g%), (33  Eq. (A28)], that completely characterizes the out-of-
equilibrium corrections to the mean-field behavior up to the
and the flelds<p and » via the relations[33] ¢g= Z1/2 second order in the expansion, is reported in Fig. 2.

Due to the small prefactoref/72 for the Ising modelN
_an ¢, SO that =1), it might be very hard to detect these corrections in
numerical and experimental works, as it happens for the cor-
rections to the mean-field behavior of the stdidi] and
equilibrium dynamicg35] two-point functions.

R(t,8)=(Z,Z;) YRg(t,s)

N+2 4792

—i 3o+ 0(g®) |Rg(t,s). (3.9

IV. TWO-LOOP FLUCTUATION-DISSIPATION RATIO

After this renormalizationR(t,s) is a regular function of In this section, we evaluate the FDR up to the orefer
dimensionality also fOE—LO. The critical response function We do not compute the full tWO_point correlation function
is now obtained by fixingy at its fixed point valug30], C(t,s), since onlydsC(t,s) is required to determine the
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v

s t, t" t
02,4
~“4 b —— f(v)- £(0) " M
) - . s tl t" t
5 ---- 2log§10g1+: +§(‘1’(U)—‘I’(0))+ C?3

+f(v) - £(0)

FIG. 2. Plot of the two-loop contribution to the universal func-
tionsFr(v) [see Eq(3.11)] andF ,c(v) [see Eq.(4.9)].

FIG. 4. Diagrams contributing only to the correlation function.

(ds— ) e(—a,t) ¢(q,9))
FDR. This derivative may be computed by using the follow-

ing diagrammatic identity. =2(¢(—,1)p(0,9)) - %w(—q,t)«ps(q,s»,
Each amputated diagraby(t,s) (with labeli) contribut- :
ing to the response function, also contributes to the correla- 4.3

tion one in the two diagrams, as graphically illustrated in = o, o )
Fig. 3. Taking into account the explicit form of the propaga-Which, in the limitq°—0, is diagrammatically expressed by
tors[see Eqs(2.7) and(2.8)] for >=0 and causalitjwhich Eqg. (4.1) as far as common amputated contributions to re-

also implies thaD (t,s)= #(t—s) apart from contact terrjs  SPOnse and correlation functions are concerned.
it is easy to find that Diagrams contributing to the correlation function, but not

to the response one do exist. They have to be computed
without taking advantage of this identity. At two-loop order
there are two of them, as in Fig. 4.

Summing the six contributions to the correlation function
we finally arrive at the expression

(95Ci(t,S):2Ri(t,S)+Zfoodt,t,Di(t,vS)’ (4.3)
0

whereC;(t,s) is the contribution of this diagram to the cor- ;5 c(t,s) N+2 N+2\2
relation function,R;(t,s) is the contribution to the response T=R(t,s)—go 6 (aC)é'l+ gg T) (aC)g'l
function, andD,(t’,s) is the common amputated part.
Relation(4.1) is nothing but a particular case of a relation (N+2)2 ,p N+2 »s
following an algebraic identity for the functional integral, + g (00 ——(9C)e
ie.,
1[N+2 N+2)\2
bt i 24, "% 2,5
5 ) + > 18 (0C)="+ 6 ) (0C) H
o=f dedede]— x',t)e” Sle.el~Holeall
[dede wo](scp(x,s){w( ) } +O(gd). (4.4)

4.2
4.2 Considering the explicit expression for the diagrams

given in Appendix B one obtains the derivative of the bare
with t>s>0. At criticality (i.e., ro=0, using dimensional correlation function. This bare quantity is renormalized using
regularization we get in momentum space, Egs.(3.3) and(3.4), and

Di(t,s) = < >
s o t
R;(t,s) = N\/—< N FIG. 3. Diagrammatic trick.
s t t

Ci(t,s) = % >/\/\/— + —AA< >—
s i - t 5 -y ¢
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QB:ZQQ W|th ZQ:

Z 1/2
Z§D>

so that, taking into account th® we set equal to 1 in the

previous relations,

dsC(t,8)=20Z, 9Ca(t,5)=(2,Z;)~*? ascsu,s)(. |
4.6

(4.9
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A plot of the loop corrections in the above expresdiapart
from the factor 3N+ 2)/8(N+ 8)? appearing also iffg(v)]
is shown in Fig. 2. As already noticed féiz(v), effective
corrections to mean-field behavior are quantitatively very
small for F ,c(v).

Taking the long-time limitfaccording to Eq.(1.10] of
both the correlation and response functions one obtains the
limit of the critical fluctuation-dissipation ratio we are inter-

ested in,
The expression 0B ,C(t,s) in terms of the renormalized (X;:o)*l_ N N+2 L2 N+2
coupling has a multiplicative redefinition of its amplitude at 2 - 4(N+8) €re (N+8)2
the first order ing. Considering the fixed point value fgr
[cf. Eq. (3.5)] one finally obtains N+2 N 3(3N+14) relrore
8 4(N+8) ‘
+ + +
9sC(t,s) _ . N+2 ,3(N+2)(3N+14) @10
2 4(N+8) 4(N+8)3
with
|14 N2 L, 6N+ 3 23 3
e———IN-+—| ———
4N+8) s 4| (N+8)? c=—Z+ZIn2(2+11In2—3In3)—§In23+§Li2(1/4)
N+3 t  (N+2)2 t
v —+In2)|n—+¥n2— 21 21 1
N+8 S 8(N+8)2 s —ZL|2(1/3)+§L|2(3/4)—§L|2(8/9)=—0.04]5....
6(N+2) 4 N+2 4.1
—(—Z)Ingln(t—s) ][1+62 5 (419
(N+8) (N+8) We note that the contribution afto the FDR is quite small.
3 4 t—s 3 4 3 For example, withN=1 the sum of the first two terms in
—InzIn——9ye=In= - brackets is~1.8, which is about 45 times larger than
X 4In3lnt+$ yEzln3+d>(s/t)+8f(s/t) g
N+2 3 4 3 4 V. CONCLUSIONS AND DISCUSSIONS
t+—+z 1—In—)|n2—— 1+In—) ) ) o _
8 2 3 4 3 In this work we studied the off-equilibrium properties of
the purely dissipative relaxational dynamics of ldivector
+ § |n2f + § Lio(1/4)| | +O(€3), (4.7) model in the framework of field-theoreticalexpansion. '_I'he
8 3 4 results presented here extend those of R&f]. The scaling

where the function$(v) and® (v) are defined in EqgA28)

forms for the zero-momentum response function and for the
derivative with respect to the waiting time of the two-time
correlation function read

and(B12), respectively, and Liis the dilogarithmic function
whose standard definition is recalled in £415). Note that

also for 9,C(t,s) all the nonscaling terms cancel out when

R(t,s)=Agr(t—9)3(t/s)FR(s/t), (5.1

the coupling constant is set equal to its fixed point value.
This result agrees with the scaling form in momentum space

[analogous to Eq1.8)],

9sC(t,5)=A,c(t—9)3(t/s)°F ,c(s/t),

(4.9

3sC(t,8) =A,c(t—9)3(t/s)F ,c(slt). (5.2

The universal functiongg(s/t) and F,c(s/t) are given in
Egs.(3.11) and(4.9), respectively. In both cases the correc-

with the samea and 6 as given in the preceding section and tions to the Gaussian value 1 is of ord@r In principle these

a new universal scaling functidf,c(v) given by

F(gc(v):]._{' 62

3IN+2)[ 4 1-v
—————12InzIn
8(N+8)?l 3 1+v

+ g[@(v)—qD(O)]—i-f(v)—f(O) +0(€%).

4.9

corrections should be detectable in computer and experimen-
tal works, but being quantitatively very small, they are hard
to observe. We would remark that this fact does not mean
that aging effects in these models are weak compared with
the analogous phenomena in glassy systems. In fact aging
manifests itself in the full scaling form@.g., 6+ 0) and in
the violation of fluctuation-dissipation theorem, i.e., X
#1 in a quantitative way.

We note that théx(t,s) we found agrees with the general
RG form, but at first sight it is not compatible with the Fou-
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FIG. 5. X* as a function of the dimensionality=4— e for FIG. 6. N dependence ok™ for d=2, 3. The upper curve is the

severalN. For eachN the upper curve is thg2,0] Padeapproximant ~ [2.0] Padeapproximant and the lower one ,2]. The dotted
and the lower one thg0,2]. The exact result foN= is reported  line is the exact result foN=cc in d=3 (X"=1/3).

as a solid line. The numerical Monte Carlo values for the Ising
model in two and three dimensions are also indicaéfedthe latter,

. oL error the difference between the two approximants. Using
there is no indication about the erjor

this procedure, we obtairK*=0.429(6) for the three-
dimensionalN=1 model, compared te=0.46 found at one-
loop [21], in very good agreement with the Monte Carlo
Isimulation valueX®=0.40 for the three-dimensional Ising
Model [17] with nonconservativegheat-bath Glaubgrdy-

rier transform of Eq(1.6). This naive comparison should be
done very carefully because it involves a Fourier integra

which could be diverge_nt. The aqalysis (.)f the fqltjepen- namics. Considering=2 one obtainsX*=0.30(5) forN
de_nce OfRq(t,S) may give some insight Into this problem. =1, improving the one-loop estimate0.42 in the right
This dependence has been already carried out UD() girection towards the Monte Carlo resuff"=0.26(1) for

[21], but it is very hard to determine it up to two l00ps. In yhe tyo-dimensional Ising Model with Glauber dynamics
other dynamical universality classes this discrepancy aIread[)iﬂ_
arises aO(€). The computation of the full dependence in Using our results we can give predictionsXt for sys-

these cases seems to be simpler and may provide some usefiths that have not yet been analyzed by numerical simula-
hints [36]. tions. We estimateX”=0.416(8) for the three-dimensional

We com_puted the FDR?q=0fo_r generaN, cf. Eq.(4.10. XY model andX”=0.405(10) for the three-dimensional
As shown in Ref|[21] this quantity for zero momentum has eisenperg model. These predictions may be tested by nu-
the same long-time limit as the standard FBR Using this  merical simulations extending the results quoted in REH).
equality we may compare our result with those presented in there are also several open questions that need further
the literature. . investigations. For example, a “rigorous” proof of the fact

n the l'm'g N—c, Eq.(4.10 reduces taX"=1/2—€/8 4t the FDR is exactly 1 for all modes witif+0 (some-

—€ /324— O(e”), in agreement with the exact result for the o related to the presence of a mass)d#&s not yet been
spherical modeK”=1-2/d [17] given. Then one might ask how these theoretical results
The formula for generaN [cf. Eq. (4.10] allows Us to  (5caling forms, relaxing modes, etchange if one changes

m_ake quantitative prediction for a large clas_s of systems. “?nesoscopic dynamic.g., with conserved quantitiesor

Fig. 5 we report the dependenceXf on the dimensionality \yhen more complex static Hamiltonians are considered, e.g.,
at fixedN, while in Fig. 6 we show the dependence Nl those with disorder or frustration, or when different initial
fixedd=4-e. For each model we report two values: one iscongitions (e.g., with long-range correlationsre consid-
obtained by direct summatioPadeapproximan{2,0]) and  gred. we will consider in forthcoming works th®(N)

the other by ‘“inverse” summation(Pade approximant model with modelB and C dynamics[36] and the purely

[0,2]). We do not show thg1,1] approximant, since ithas a jssipative relaxation of the Ising model with quenched ran-
pole in the range of we are interested in. From these figures 4om impurities[37].

some general trends may be understood.

(1) Decreasing the dimensionalit){” always decreases, ACKNOWLEDGMENTS
at least up toe=2 (for the one-dimensional Ising model the
valueX”=1/2 is expected17]). The authors are grateful to M. Henkel for useful corre-

(2) IncreasingN, X decreases, approaching in a quite fastspondenpe a_nd comments and_ to S. Caracciolo, A Pelissetto,
way the exact result for the spherical model. and E. Vicari for a critical reading of the manuscript.

(3) For N=co the curve of thg 0,2] approximant repro-
duces better the exact result in any dimension with respect to
the[2,0] approximant.

The last point suggests the use of {ltg2] value as an The four diagrams contributing to the response function
estimate ofX”, also for physicaN. We quote asndicative  up to the two-loop order are reported in Fig. 1. The one-loop

APPENDIX A: CONNECTED DIAGRAMS FOR THE
RESPONSE FUNCTION
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diagram was already discussed in R&1]. The expression 2 t/1 t
obtained there for the critical bubblee., for the 1PI part of R*>Ys,t)=—| —In=| =+Int+In2+ yg |+ = In?=
. . 8 sle 2 s
the diagramis
+0O(e). (AB)
d 1-dP2
c(t):J dq cot,t)=— ! (ZL The computation oR?? is simple once the expressions
2md di2—=1 (44)92 for R“! and B.(t) are known. Indeed, from EqA2), one
obtains
r'(di2—1
N 72 Loz (A1) t
2 szz(s,t)zf dt’RY(t,t/)Bg(t')
S
Thus_ the_ ful! connected one-loop diagram for the response - 2F2(d/2— 1) [t2-d2_g2-d2]2
function is given by =Nj i1 yy— . (A7)
t . . .
Rl'l(LS)ZJ dtch(t/) that IS, expandlng IE,
S
t
R>%(s,t =N2—In S*O A8
=— _F(d/2— 1 (t2-d2_ g2-di2) st 432 (€). (A8)

12922 df2) , , -
The last diagranR?3 is more difficult to be worked out

_ 1 | t e | ol t 1I )t and it requires a long calculation whose main steps are de-
=—Ngz|Ing+ 5| (vetIn2+Int)in-—5In"C scribed in what follows. First of all we evaluate its 1PI con-
tribution calledO4(t,s),
+0(€?). (A2

dig, [ di, o
From these one-loop expressions, it is quite simple tool(t’s):J (zw)dj (2m)° ql(t $)Cq (t S)R +Q2(t’s)

compute the two-loop integraB?* and R?? of Fig. 1. In-
deed the two-loop critical bubblghe 1P| part ofR>%) can 9 diq, dv, 1
be computed in terms d.(t) as 6(t— f

P ) (2m? (2m) 203

— e A1(1+9)) (@~ U5(t=9) _ g~ a3(t+5)) g~ (ar+ar)*(t-9)

e a5(t-9)

Bea(t) = "Be(t')Rg, (,t)Cq (t,t) .
=0(t—s)| (t—5)27934(1,D) + (t+5)2" 94 1—
b(d) s t+s
d4 d ' ( ) 2 d t+s
—2(t—s)°" %4 E,l , (A9)
where )
with
r?(dr—-1 4—d)I'?(2—d/2 d d
b(d)= ( SPEta s ) Jg(ab)= P [ 9z gz-a-biaytar?
2d-1 2I'(4—d) di < (27T)d (27T)d
— 2 [L+e(n2+y)+O(e)] (A4) _NZ[(1+b)(at b0, 22
8 YE : =Ngl(1+b)(a+b)] |\ b+ 1)(atD),’
(A10)
By means of this expression, we compiRé’ taking into
account the external legs witi=0, and
rdme) (=
t o 70—t Fa(x)= ( )f dsg?"2e>T'(0,s)
R¥is = [ dU Bt =N 49 :
s _
_ I(di)r'(di2—1) F 1d 1d X
. . . . . 2d—2) 2 H2 "2 24
which near four dimensions has the following series expan-
sion: (Al1)
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In particular, for our calculations, we are interested in the I'?(d/2—1)
limits Il(v)=T[lnv(8In2—6|n3)+f1(v)+O(s)],
(A21)
E B In(1—x/4) (A12
0= x ) r2dr-1)[ 2
[o(v = —;Inv—lnzv—(l—Glnz
Fu_o(1)=I 4+ 1>| 4 1| 24+1|_' (1”
_(D=Inz —=|Inz——In“z+ < Li,| —
! 3 1 2)"3 a3 2724 +31In3)Inv+f,(v)+0(e) |, (A22)
+0(€?), (A13)
wheref;(v) are given by
r?(d/2—1)
Fo(0)= ——F. (A14) v 1
4 fl(v)/4=|nvfosz4((1—z)2)+f dzlnzF,((1—2)?),
Here Liy(2) is the standard dilogarithm, defined as (A23)
_ sk _ Jv Fisl—2)—1 fl Inz
LIZ(Z):kZl F (A15) fz(v)/4 Inv OdZ —1_2 + UdZ _1_2
1 In(1-2)
The final expression foD4(t,s), in generic dimension, is X[Fa(l=2)—1]+ L dz— —, (A24)
N3 6(t—s)

O,(t,s)= t—3>2) and in particular these are regular functions in the limit
1\LHe)—

[Fd(l)(t—s)“HZdFd( (T

2d—2 _>01

t—s

t

f1(0)=In?2+1In? %+ 3 Li,(1/4) — 4 Li,(2/3), (A25)

—2[t(t—s)]* " 92F, (A16)

7T2

3 ,4
f2(0)= - F‘F Eln §—L|2(1/4). (A26)

The full connected diagrarR?3(s,t) is thus given by the
following expression:
Inserting all these contributions in EGAL17), we get
t t
R?¥(s,t :f dt”f dt’ O, (t',t"
(s)= ) 4t ], v Ot AR*st) 1 4 t| 4
—_—= In§+ln§ —Ing[ln(t—s)+yE]

2 N2 e
:Nd[Al(S!t)+A2(S=t)_2A3(Sat)]1 (A17) d
1 | | t | 2t f(s/t)
where E-f-’yE-f— nt n§+§n §+ 2
(t—s)*¢ +0(e), (A27)

Aq(s,1)=22"9F4(1) (A18)

(4—d)(3—d)’
with

1 1
A , :22*d 4—d d —d d 2}1*4F 1— 2
A t L/t vy fy 227 Fo((1=27) f(v)=fl(v)—2f2(v)—lng(2+ln12)—2 Li,(1/4),

=22-d4=d| (s/t), (A19) (A28)
1 1 ? 4 e 58 _ _
A3(s,t):22—dt4—df dyy3—df dzA 4 F(0)= 7 —2 I +3InP2—In? +3 Liy(1/4) 4 Liy(2/3
s/t y
X(l_z)l—dIZFd(l_Z) =0.66370.... (A29)
_ 92—di4—d
27 2/ (A20) APPENDIX B: CONNECTED DIAGRAMS FOR THE FDR
The evaluation of the two functiorig(v) andl,(v) is rather In this appendix we evaluate the rest of the diagrams re-
cumbersome but algebraically trivial. After some calcula-quired for the computation of the FDR. We do not evaluate
tions one gets the full integral for the correlation function, since we make
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use of the trick explained in details in Sec. IV. For this reasorits 1P| partO,(t,s). Introducinggs=

PHYSICAL REVIEW E66, 066101 (2002

g,+09s,, this contribu-

we consider first those diagrams contributing also to the retion is given by(for t>s)
sponse function and we evaluate only their extra contribu-

tions [given by [5dt"t"D;(t",s) in Eq. (4.1) and denoted
with the subscript &” in what follows] to the derivative of

the correlation function. For the first three diagrams these

contributions are very simple,

(9C)s*=sBy(s)= Nd[ - %— g(m s+ye+in 2)} +0(€?),
(B1)

2
radi-1) ,

S
aC 24:] dt"t"B.(t")By(s) =N —— s
( )e o c( ) c( ) d2d(3—d/2)

N2

=16 tOle),

16 (B2)

,1(1
((?C)e —sBCz(s) 8 +7E+In2+lns)+0(e)

(B3)

The fourth contribution is less simple,

S
(9C)5°%= fodt"t"ol(t",s)

Fa(1)
(4—d)(3—d)

:N§22—ds4—d|:
1 1

+f dzde((l—z)z)—Zf dzA1-z)t79?
0 0

XFg4(1-2)|. (B4)

Using now the explicit form foiF,(x) given in Eq.(A12),
one obtains

4(4C)%3
N2

1+| oyt
z ns YE E

4
In=+1

5+ 1] +Lis(1/4)

(B5)

|41|4 In2|+0
+n§ an—n + (6)

qd qd
Oz(t,s)=J (2:)1(1 2 q)zd 8 (£,5)CS(1,5)CY (1.5)
d¢ d¢
-] (2:)1df (2:>2dH AR

=NAA% 9K (1) +30° K y(Alo)

—3A% 9K, (a/A)— 029K y4(1)], (B6)
with A=t—s, o=t+s, and
) fddquddqzll 1
Ky(X)= — -
9 (2m)%df 03 (A1 +02)?
Xe_ql_qZ_X(ql+q2)2
F(d/2 1)I'(d/2)
4 (1+u)d 2
N RERERLL
xf dvp®2-2 1 7 (B7)
0 (1+u)?
In the following we are interested in the limits
_1 2(1+x) 1 1+2x B8
Ka(x)= 2 1+2x &n(:H_X)Z’ (B8)
2l 4 3 41 1I 25 Li»(8/9)
4—(1)= n3+ n3 2+yE +Zn + 5
+0(é?). (B9)

Introducing these results in the expression for the connected

diagram

(9C)%4= fotdt’oz(t’,s)=fosoz(s,t’)+f:oz(t’,s),
(B10)

The diagrams whose amputated part does not contribute
also to the response function are shown in Fig. 4. The sunset-
type diagram ¢C)2*is quite difficult, thus we first compute one finds
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(ﬂC)24 d( )
N3 —d

t
+3f dt’
S

d()

!

(s+t’)3de(t

0

——[2s* 94+ (t—9)* I (t+5)* d]+3f dt’

PHYSICAL REVIEW B566, 066101 (2002

ol
+t’ s—t’

(s+t")3 9K,

t'—s (=9 9K, s+t’
"+s t'—s

[234 I+ (t=9)* = (t+9)* ] +3(29)*" d“ dy(1+y) 7 [Kg(y) —y* Kq(1h)]

(t—s)/(t+s)
+f dy(l—y)d5[Kd(y)—y3de(1/y)]}

3 1 1 t-—
=§In§ ;+Ins+2IntT+yE +d(s/t)+0O(e), (B11)
where =-0.2489 .. .. (B13)
D (v)=2K4(1)— gyE|nf+3 flﬂ Now the only diagram left i€2° of Fig. 4. It is given by
2 3 olty
1 (1-v)/(1+v) dy
X Kaly) = Kal1y) +f -y 02'5(t,s)=f dt’dt’RY_(t,t")Be(t") Co_o(t",t)Bg(t')
1 XRq_o(s:)
Ka(y) - §K4(1/y) - (B12)
o, r?(d/2—-1)
In particular we are interested in the limit—0, given by d2“—1(3—d/2)(2—d/2)
2—d/2
1 dy 1 (1) 3 4 2-d2_ S 3-di2
—oK! _Z == — X |t ——IS . B14
®(0)=2K4(1)+6 01—v2 Ka(y) yK4(y” 2 75'”3 5—d (B14
4 39 ) 9 13 5
=zing+ 7 In"2=7In2+In3-7-In"3 Its derivative with respect ts, near four dimension, is

2 21 1
7 Lia(1/3)+ 5 Lin(314)— S Lix(819)

+0(e). (B15)

t
In-+1
S

1
(4C)*%=3,C>At,8) =N g
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